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The non-linear dynamic interaction between the impact of the "rst asymmetric
liquid sloshing mode, represented by an equivalent pendulum, and the elastic
structural dynamics is examined in the neighborhood of simultaneous occurrence
of parametric and internal resonance conditions. The analytical modelling of the
impact force is described by a power function. The present work considers both
weak and strong non-linear forces on interaction. The method of multiple scales is
used to determine the system response in the neighborhood of three sets of di!erent
resonance conditions. Under "rst- or mixed-mode parametric excitation, the
normal modes interact through internal resonance condition. The system response
is found to be strongly dependent on initial conditions. Depending on the initial
conditions and internal detuning parameter, the response can be quasi-periodic or
chaotic with irregular jumps between two unstable equilibria. In the presence of
impact forces, the system preserves "xed response amplitude response within
a small range of internal detuning parameter. Beyond that range, the response
exhibits quasi-periodic motion mainly governed by the initial conditions, internal
detuning parameter, damping ratios and excitation level. Under second- mode
parametric excitation, the second mode reaches "xed response, depending on initial
conditions, with no energy sharing with the "rst mode. However, the phase angles
are found to vary with time. Under combination parametric resonance, and in the
absence of impact forces, the response is found to be sensitive to initial conditions.

( 1999 Academic Press
1. INTRODUCTION

The linear modelling of parametric excited systems is quite adequate to predict the
stability state of the equilibrium position. If the equilibrium is unstable, the
linearized analysis will show an exponential growth of the response amplitude
without limit. However, most real systems possess a non-linearity which becomes
predominant such that when the response reaches a certain level, the system ends
0022-460X/99/350857#29 $30.00/0 ( 1999 Academic Press
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up in a bounded limit cycle. In multi-degree-of-freedom systems, the equations of
motion may be non-linearity coupled such that one mode may indirectly excite the
other modes. Such non-linear modal interaction can be of considerable e!ect under
certain conditions. This type of coupling is referred to an autoparametric interaction
when an externally excited mode can act as a parametric excitation for further
modes. In autonomous systems, a certain type of instability may occur when the
normal mode frequencies are related by the relationship +n

i/1
k
i
u

i
"0, where k

i
are

integers. This relationship is referred to as &&internal resonance condition''. The
vector k"Mk

1
, k

2
,2, k

n
N is called the resonance vector, while the number

k"Dk
1
D#Dk

2
D#2#Dk

n
D is called the order of internal resonance. In the case of

non-autonomous systems, a state of autoparametric resonance may occur when the
contribution of internal resonance exists simultaneously with an external resonance
as a result of external force.

The problem of internal resonances in non-linearly coupled oscillators is of much
interest in connection with redistribution of energy among the various natural
modes. This energy sharing is usually brought about by resonant interactions
among the natural modes of the system. The nature of couplings among these
modes plays a crucial role in such interactions. In a straightforward perturbation
theory, internal resonances lead to the problem of small divisors which are
associated with terms having factors such as (+N

i/1
k
i
u

i
)~1.

In Hamiltonian autonomous systems, the simultaneous presence of several
internal resonance relationships may result in some types of instability caused by
certain non-linear terms in the system equations of motion. Stability analysis of
such systems has been considered for di!erent cases of internal resonance
conditions [1}5]. Kunitsyn and Matveyev [4] formulated the normal form of
a system that contains the "rst non-linear terms for an arbitrary number of
non-interacting resonances of odd order. They classi"ed the internal resonance
conditions as weak and strong. Weak resonance preserves the stability of the
system, while strong resonance results in system instability. However, the
interaction of several weak internal resonances linked by more than one common
frequency can result in system instability. The stability of the steady state responses
of dynamic systems with multiple odd- and even-order internal resonances was
considered by Kunitsyn and Markeev [6] and Kunitsyn and Perezhogin [7]
respectively. These studies have shown that the problem of stability of systems with
fourth order internal resonances is more complicated than for third order internal
resonances. The stability of the equilibrium position of multi-dimensional
Hamiltonian systems was determined for multiple independent and interacting
resonance conditions. Interacting resonances imply that one or more frequencies
are common in two internal resonance conditions. Kunitsyn and Tuyakbayev [8]
found that if among resonance conditions there exists at least one strong resonance,
then the trivial solution of the system is unstable. On the other hand, if all
independent resonances are weak, then the trivial solution is stable [9]. Zhuravlev
[10] considered di!erent types of oscillation shapes in the con"guration space and
manifold space in the presence of multiple internal resonances. In the absence of
perturbation, a subspace exists in which every trajectory is a closed curve. These
trajectories become unstable under in"nitesimally small perturbations.
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When the non-linear system is subjected to an impulsive acceleration, the system
may experience impact loading if it carries movable components such as liquids in
partially "lled containers, Methods for estimating the liquid impact and the
associated pressure involved are not well developed. The only way to know the
impact pressure have been reported through experimental studies. The sloshing
impact loading cannot be viewed as a single loading event since it can be repeated
due to the inertia and restoring forces. This type of impact is known in the literature
as vibro-impact [11]. Systems involving vibro-impact with masses collide with rigid
or elastic barriers during their oscillations and constitute a speci"c class of strongly
non-linear systems. The non-linearity is mainly due to extremely rapid velocity
changes during impacts. These changes are usually treated as being instantaneous
(velocity jumps) and they lead to various strongly non-linear features of system
behavior. If the system is linear with constant coe$cients and is subjected to impact
loading it will experience non-linear behavior. Hunt and Grossley [12] replaced the
sudden change of the velocity during impact between colliding bodies by a strongly
non-linear mass}spring}damper system. Vedenova et al. [13] replaced the impact
forces by a high-power force which covers both elastic and rigid impact cases.

In the absence of internal resonances, the non-linear modal interaction of
a pendulum, describing impact motion, with an elastic support structure was
examined by Shaw and Shaw [14] and Pilipchuk and Ibrahim [15]. Shaw and
Shaw represented the impact by the momentum equation together with the
coe$cient of restitution. They also assumed the collision between the pendulum
mass and its barrier walls as a discontinuous process. One can also
phenomenologically describe the interaction between the pendulum and the barrier
with a special potential "eld, which is very weak in the region between the barrier
walls and then becomes fast growing as it reaches the barrier walls [15]. Pilipchuk
and Ibrahim found that the response behavior reveals that a high-frequency
out-of-phase non-linear mode takes place with relatively small tank amplitude, and
is more stable than the in-phase oscillation mode under small perturbations. The
in-phase mode has relatively large tank amplitudes and does not preserve its
symmetry under periodic parametric excitation. The work of Pilipchuk and
Ibrahim was extended by El-Sayad et al. [16], who included non-linear coupling
between the supporting structure and the pendulum motion. Under parametric
excitation, El-Sayad et al. examined the system response under three di!erent types
of parametric resonance conditions. When the "rst mode was parametrically
excited, the system exhibits hard non-linear behavior and the impact loading
reduced the response amplitude. On the other hand, when the second mode was
parametrically excited, the impact loading results in complex response behavior
characterized by multiple steady state solutions, where the response switches from
soft to hard non-linear characteristics. Under combination parametric resonance of
summed type, the system possesses a single steady state response in the absence and
in the presence of impact. However, the system response followed a soft behavior in
the absence of impact and switches to a hard one in the presence of impact.

The purpose of the present work is to examine the dynamic response
characteristics under simultaneous occurrence of internal and parametric
resonances in the presence of impact forces. The method of multiple scales (see, for
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example, reference [17]) is used and the impact forces are described by quintic
power non-linearity. Basically, the system response will be examined under the
following set of resonance conditions: (1) u
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1
and X

y
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, (2) u
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and X
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, and (3) u
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, where u

1
, u

2
are the normal

mode frequencies of the system and X
y
is the parametric excitation frequency. The

reason for selecting these three resonance conditions is due to the fact that each set
will provide di!erent dynamic characteristics.

2. EQUATIONS OF MOTION

Consider a liquid container supported by four massless rods of length ¸, which
are restrained by four torsional springs of sti!ness k at the base as shown in
Figure 1. The base is subjected to vertical base acceleration F

y
(t). Let M be the total

mass of the container including liquid and m the equivalent sloshing mass of the
"rst asymmetric mode of the liquid. The #uid-free surface is modelled as
a pendulum of length l. The equivalent pendulum parameters for di!erent types of
container geometry are well documented in Abramson [18]. The pendulum can
reach the walls of the tank if its angle with the vertical axis is h"$h

0
. One can

phenomenologically describe the interaction between the pendulum and the tank
walls with a power function [15], F

*.1!#5
"b(h/h

0
)2n~1, where nA1 in an integer

and b is a positive constant parameter usually measured experimentally. One has
a limit of absolutely rigid bodies' interaction, if nPR. A "nite value of n seems
more realistic than the rigid-body limit, yet the approach includes the rigid-body
limit as a particular case. The interaction between the pendulum and the tank walls
Figure 1. Schematic diagram of the model.
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is very weak in the region DhD($h
0
, but becomes fast growing in the

neighborhood of the points DhD"$h
0
. The localized dissipative force will be

approximated by the expression F
$
"d (h/h

0
)2phQ , where d is a constant, p is

a positive integer (generally pOn) and a dot denotes di!erentiation with respect to
time t.

Using Lagrange's equation with respect to the co-ordinates h and u, and
introducing the approximation sin h+h!h3/3! and cos h+1!h2/2, the
equations of motion are
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Introducing the non-dimensional parameters
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where a prime denotes di!erentiation with respect to q. Q
ii

stands for non-linear
and excitation terms. Equations (4) are linearly coupled through the mass matrix.
They are also non-linearly coupled through inertia non-linearity. The coe$cients
b and d, and the exponents n and p are usually obtained experimentally. However,
in the absence of experimental data, one may select n"3 and p"2, while the
in#uence of the coe$cients b and d will be examined in the present work. Both
co-ordinates are parametrically excited. Higher-order exponents can be selected
but will result in more lengthy analysis. Any possible solution for equations (4)
gives the total motion as a sum of responses in its characteristic modes of vibration.
In order to derive the solution in terms of these principal modes, a transformation
to the principal co-ordinates Y should be carried out. Introducing the linear
transformation into equations (4),
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where [P] is the modal matrix with K
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1,2

and u2
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"

[(1#l2)GJ(1!l2)2#4kl2]/[2(1!k]. Now pre-multiplying equation (4) by
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[P]T, where T denotes transpose, gives
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where linear viscous damping f
i
"ef1

i
, with e"kj2/m

11
, has been introduced to

account for energy dissipation, u
i
are the normal mode frequencies and m

ii
are

constant coe$cients. The right-hand sides of these equations include inertia and
sti!ness non-linearities of cubic order and are denoted by subscript &&gn''. They also
include impact non-linearities of quintic order and are denoted by subscript
&&impact''. The subscript &&ex'' stands for excitation terms. The impact and geometric
non-linear terms are treated of the same order of O(e) since the coe$cients of the
impact terms are of higher order of magnitude than those coe$cients of cubic
terms. The functions W

ii
are listed in Appendix A.

3. SYSTEM RESPONSE ANALYSIS

In order to identify the critical non-linear resonance conditions and to solve for
the system response in the neighborhood of these conditions, the multiple scales
method will be used. The solution of equations (6) may be expressed in a uniform
expansion form [17]
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The expansion is carried out up to "rst-order in e. Accordingly, we need to deal
with the two time scales ¹

0
and ¹

1
. Substituting the solution (7) into equations (6)

using the transformed time derivatives (8) gives
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Equating the coe$cients of equal powers of e0 and e1 (en) gives a set of di!erential
equations to be solved for >
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and >

i1
. For equation (6a) the zero and "rst order

equations in e are, respectively,
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For equation (6b) the zero and "rst order equations in e are, respectively,
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where P
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stands for non-linear, damping, and excitation terms. The general
solutions of equations (10) and (12) can be written in the form
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The right-hand sides of these equations contain terms that produce secular terms in
>
i1
. In view of the system non-linearities and excitation, these secular terms

establish di!erent types of resonance conditions. Under parametric excitation, two
types of resonance conditions may arise. These are (a) internal resonance condition
of fourth order u

2
"3u

1
, and (b) parametric resonance conditions: (1) principal

parametric resonance of the "rst mode X
y
"2u

1
, (2) principal parametric

resonance of the second mode X
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2
, (3) combination parametric resonance of

the summed type X
y
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The response characteristics corresponding to simultaneous occurrence of the
internal resonance condition (a) and one parametric resonance condition will be
considered in the next three subsections. In each case, the solutions for the complex
amplitudes A and B will be expressed in the complex polar form
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and following the standard procedure of multiple scales gives the following set of
"rst-order di!erential equations in the amplitudes a and b and the new phase angles
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These equations are integrated numerically for mass ratio k"0)2, length ratio
j"0)2, local frequency ratio l"0)5, excitation amplitude ratio >

0
"0)1,

C
16

"!0)5, C
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"!0)05 and damping ratios f
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2
"0)1. It is found that

a stationary "xed solution cannot be obtained by setting the left-hand side to zero.



PARAMETRIC AND INTERNAL RESONANCES 865
In the absence of impact, the response is examined by dropping the "fth order
terms from equations (19)}(22). In this case, the amplitude and phase equations take
the form
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These equations belong to a non-integrable non-conservative class. Accordingly,
one expects to observe complex response characteristics. It is found that in the
presence of internal resonance the system responds in di!erent ways depending on
the internal detuning only at zero parametric detuning parameter. Figure 2 shows
a sample of time history records for p

y
"0 and p

I
"0. The "rst mode oscillates

about a mean value SaT+0)2 while the second mode #uctuates with occasional
spikes about its zero equilibrium position b"0. Figure 3 shows the unimodal
amplitude}frequency response (in the absence of internal resonance taken from
reference [16]) including one point in the presence of internal resonance at p

y
"0

with p
I
"0. Obviously, the "rst-mode amplitude #uctuates around the unimodal

parametric response. These #uctuations arise mainly due to internal resonance
where there is an irregular energy distributional between the two modes.

If the internal detuning parameter is selected to be well remote from the exact
internal resonance, the response may or may not achieve a steady state depending
on initial conditions. For example, when p

I
"!25, Figure 4 shows that the system

response is chaotic, where the "rst mode oscillates about its unimodal parametric
response value, and the second mode oscillates about its zero equilibrium value. If
the initial conditions are selected very small, such as a"b"0)01, the response
amplitudes achieve "xed values a"0)22 and b"0)1.. The second-mode frequency
spectrum is essentially wide band. As the internal detuning parameter p

I
increases,

the response becomes quasi-periodic. Numerical integration has revealed that
within the range of p

I
"6}17, the response exhibits periodic solutions. This regime

also oscillates about the unimodal response "xed point (as determined by the
"rst-mode parametric excitation in the absence of internal resonance). There are
regions of internal deturing parameters within the ranges p

I
"!20 through #6,

and 18 through 55 where the response looks random in behavior. Over these
regions, the "rst mode involves few frequency components while the second mode
has a wide frequency spectrum with several spikes. Furthermore, the second mode



Figure 2. Time history records of response amplitudes for the non-impact case under "rst-mode
parametric excitation for >

0
"0)2, k"0)2, j"0)2, p
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"0)1, and initial

conditions (a) (¹
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"0)"0)01, (b) (¹
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"0)"0)01.
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may or may not oscillate about its zero equilibrium position depending on the
initial conditions. Figures 2 and 4 reveal that there are occasional symmetric spikes
indicating that the response processes are essentially non-Gaussian with zero
skewness and kurtosis greater than 3. The skewness is a statistical parameter
measuring the asymmetry of the process and is expressed in terms of third order
statistical moments. The kurtosis, on the other hand, measures the degree of
#atness of the probability density curve about the mean value. The kurtosis is
usually expressed in terms of the fourth-order moment.



Figure 3. First-mode amplitude}frequency response curve in the absence of internal resonance [16]
showing the response amplitude (dashed vertical line between two crosses) at p

y
"0)0 when the

system is internally tuned for p
I
"0)0, >

0
"0)2, k"0)2, j"0)2, f

1
"f

2
"0)1.
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For the impact case, the quintic terms should be included and equation (19)}(22)
should be considered. The numerical integration yields non-stationary solutions in
the form of chaotic motion as shown in Figure 5 for p

I
"0)0. Comparing

Figure 5 with Figure 2 reveals that the impact loading results in asymmetry in the
second-mode response indicating non-zero skewness. The second mode experiences
wide frequency spectrum and involves several spikes in both the time and frequency
domains. The unimodal amplitude}frequency response under parametric
excitation is shown by solid and dashed curves in Figure 6 (taken from reference
[16]). Figure 6 also includes the "rst-mode amplitude response in the presence of
internal resonance p

I
"0)0 and indicated by the vertical dashed line at p

y
"0. If

the initial conditions are changed, the response takes completely di!erent scenario
characterized by large asymmetric spikes on the positive side of the response
amplitude. The spike in the time domain of the second-mode response are found to
persist as the detuning parameter increases.

More numerical integration revealed that within the internal detuning parameter
range p

I
"!15 through !10, the response is found to be quasi-periodic. The

response amplitudes always oscillate about non-zero mean values as shown in
Figure 7. For internal detuning p

I
'!10 the response is chaotic with a wide

frequency spectrum in the second-mode response.



Figure 4. Time history records of response amplitudes for the non-impact case under "rst-mode
parametric excitation for >

0
"0)2, k"0)2, j"0)2, p

y
"0)0, p

I
"!25, f

1
"f

2
"0)1, and initial

conditions (a) (¹
1
"0)"0)1, (b) (¹

1
"0)"0)1.
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3.2. SECOND-MODE PARAMETRIC EXCITATION

Introducing the detuning parameters p
i

such that X
1
"2u

1
#ep

y
, and

u
2
¹
0
"3u

1
¹

0
!p

I
¹
1

and the new phase angle c de"ned by c
1
"p

y
¹
1
!2b,

and c
2
"p

1
¹
1
!b#3a, the following "rst-order di!erential equations are

obtained:
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Figure 5. Time history records of response amplitudes for the impact case under "rst-mode
parametric excitation for >

0
"0)2, k"0)2, j"0)2, p

y
"0)0, p

I
"0)0, f

1
"f

2
"0)1, C

16
"!0)05,

C
15
"!0)05, and initial conditions (a) (¹

1
"0)"0)01, (b) (¹

1
"0)"0)01.
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Figure 6. First-mode amplitude}frequency response curve in the absence of internal resonance [16]
showing the response amplitude (dotted vertical line between two crosses) at p

y
"0)0 when the system

is internally tuned for p
I
"0)0, >

0
"0)2, k"0)2, j"0)2, f

1
"f

2
"0)1.

870 R. A. IBRAHIM AND M. A. EL-SAYAD
#A3
GM

4
u

1

#

GM
10

u
2
Ba2b2#

3
u

1
AGM 7 sin c

2
!

15
16

C
15

u
2
cos c

2B ab3

!

5
8

C
16A

9
u

1

!

1
2u

2
Bb4#

1
32

(u
1
C

15
sin c

2
#5C

16
cos c

2
)
a5

b
, (29)

u
2

Lb
L¹

1

"!

1
4
G

22
b>

0
cosc

1
!u2

2
f1
2
b!GM

11
a3 sin c

2
#

1
32

C
15

(u
1
cos c

2
!5C

15
sin c

2
)a5

#

3u
1

16
C

15
a4b#GM

12
a3b2 cos c

2
#

u
2

16
C

15
b5. (30)

Equations (27)}(30) de"ne the response amplitudes and phase angles in the
neighborhood of the simultaneous parametric resonance condition X

y
"2u

2
and

internal resonance condition u
2
"3u

1
. The response can be obtained by setting

the left-hand side to zero.



Figure 7. Quasi-periodic time history records of response amplitudes for the impact case under
"rst-mode parametric excitation for >

0
"0)2, k"0)2, j"0)2, p

y
"0)0, p

I
"!10, f

1
"f

2
"0)1,

C
16
"!0)05, C

15
"!0)05, and initial conditions (a) (¹

1
"0)"0)01, (b) (¹

1
"0)"0)01.
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The non-impact response is examined by dropping the quintic terms from
equations (27)}(30). The amplitude and phase equations take the form
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Careful inspection of these equations for the steady state solution reveals that the
resulting three algebraic equations [from equations (31), (33) and (34)] are in two
unknowns, namely b and c

1
. This means that the time derivative of c

2
may not

vanish. Note that if the left-hand sides are set to zero one may get more than one
solution. These solutions include the unimodal response which can be obtained in



Figure 8. Time history records of response amplitudes for the non-impact case under second-mode
parametric excitation for >

0
"0)2, k"0)2, j"0)2, p

y
"!50, p

I
"0)0, f

1
"f

2
"0)1, and initial

conditions (a) (¹
1
"0)"0)1, (b) (¹

1
"0)"0)086.
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the absence of internal resonance (see reference [16]):

a"0, b"0 or b2
1,2

"

1
4GM

9

M2u
2
p
y
$JGM 2

22
>2

0
!16u4

2
fM 2
2
N . (35)

The validity of these solutions is examined by integrating equations (31)}(34)
numerically for mass ratio k"0)2, length ratio j"0)2, local frequency ratio
l"0)5, excitation amplitude ratio >

0
"0)1 and damping ratio f

1
"f

2
"0)1.

Figures 8 show that the "rst modal amplitude always reaches its zero equilibrium,
while the second modal amplitude may or may not reach a "xed value depending
on the initial conditions. When the second mode does not reach steady state value,
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the "rst phase angle always varies with time, while the second phase angle has
a constant time rate. For di!erent set of initial conditions, the second-mode
amplitude reaches a "xed point; however, its phase has a constant time rate, while
the second phase possesses "xed steady state values.

The numerical integration always yields a unimodal response regardless of the
the value of the internal detuning parameter and initial conditions and no energy
transfer from the second mode to the "rst one. For zero internal detuning
parameter p

I
"0, the unimodal response is always a "xed point but takes two

di!erent values depending on the initial conditions over a parametric detuning
parameter p

y
ranging from 0 to (!40). For p

y
(!40, the response exhibits two

possible di!erent solutions; one is "xed while the other is chaotic. For the chaotic
response, equations (31)}(34) do not achieve a steady state for relatively large initial
conditions while they achieve a "xed point for smaller initial conditions. It is also
found that the internal detuning parameter does not have any appreciable e!ect on
the response except when the internal detuning parameter assumes very large
values. The initial conditions can bring the response either to a "xed point or to
periodic/quasi-periodic oscillations.

Figure 9 summarizes the di!erent scenarios described earlier. It shows the
amplitude}frequency response curves in the absence of internal resonance as
Figure 9. Second-mode amplitude}frequency response for the non-impact case showing the
response in the absence of internal resonance (solid and dashed curves taken from reference [16]) and
in the presence of internal resonance (r) and vertical lines for p

I
"0)0.
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indicated by the solid and dashed curves (taken from reference [16]). The solid
diamond points belong to the response with zero internal detuning parameter.
Over the larger portion of the parametric detuning parameter there are two
di!erent manifolds indicated by two solid diamonds for each value of p

y
up to

p
y
"!40. There is a region showing one solid diamond (indicating "xed solution)

and a vertical short line indicating chaotic behavior.
In the presence of impact, equations (27)}(30) are considered. For the steady state

solution, the left-hand sides are set to zero. The resulting algebraic equations are
three in two unknowns which implies that a steady state response is not possible at
least for the second phase angle. Thus, equations (27)}(30) are numerically
integrated for mass ratio k"0)2, length ratio j"0)2, local frequency ratio l"0)5,
excitation amplitude ratio>

0
"0)1, C

16
"!0)5, C

15
"!0)05 and damping ratio

f
1
"f

2
"0)1. The "rst-mode amplitude always reaches its zero equilibrium

position while the second-mode amplitude reaches "xed solutions depending on the
initial conditions. However, the "rst phase angle reaches a non-zero "xed value
while the second phase angle increases linearly with time. This means that
dc

2
/d¹

1
O0 and any analytical solution is not valid.

For zero internal detuning parameter p
I

and di!erent values of parametric
detuning parameter p

y
, the response amplitude always reaches a "xed steady state

value. For each parametric detuning parameter there are two di!erent values of the
second-mode amplitude corresponding to two di!erent sets of initial conditions. It
is important to note that the amplitude b reaches two di!erent values for the same
parametric detuning parameter and for zero internal detuning parameter. In the
absence of internal resonance approaches the value determined solely by
second-mode parametric excitation.

Figure 10 shows the amplitude frequency response curves as estimated by
second-mode excitation in the absence of internal resonance (taken from reference
[16]). The solid curves belong to stable manifolds while the dotted ones are
unstable. In the presence of internal resonance p

I
"0, the response is indicated by

two solid diamonds which are increasing with the negative values of the parametric
detuning parameter up to one of the tuning points p

y
+!50. For values

p
y
(!50, the trend is changed. For very large values of p

I
"0, the response

indicated by empty squares is very close to the solid curve (of second parametric
excitation). The agreement holds for a range of parametric detuning parameter
de"ned by the region p

y
"0 to !30. For p

y
(!30, there is a deviation attributed

to the e!ect of the time variation of phase angles.
Introducing the detuning parameters p

y
and p
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, and following the standard procedure of multiple scales gives the

following set of "rst-order di!erential equations in the amplitudes a and b and
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Figure 10. Second-mode amplitude}frequency response for the impact case showing the response
in the absence of internal resonance (solid and dashed curves taken from reference [16]) and in the
presence of internal resonance (r) for p

I
"0)0.
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These equations are integrated numerically for mass ratio k"0)2, length ratio
j"0)2, local frequency ratio l"0)5, excitation amplitude ratio >

0
"0)1, and

damping ratios f
1
"f

2
"0)1.

First we consider the non-impact response which is examined by dropping the
quintic terms from equations (36)}(39). For the steady state solution, the left-hand
sides of the resulting equation are set to zero. Careful inspection of the algebraic
equations reveals the possibility of two equilibrium positions which can only take
place when the phase angles take the two speci"c values c

1
"c

2
"0 or n. The

corresponding steady state solutions are
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Another solution is given by equation (23) and
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Note that the zero solution, given in equation (41a), corresponds to the static
equilibrium position, while the other two solutions (41b) and (42) can only exist
under parametric excitation, i.e. when Y

0
O0. Obviously, the solution spirals out

about each of the two unstable equilibrium points given by equations (41b) or (42)
until its amplitude is su$ciently large when it is attracted to the other equilibrium



Figure 11. Time history records of response amplitudes for the non-impact case under mixed-mode
parametric excitation for >

0
"0)2, k"0)2, j"0)2, p

y
"0, p

I
"!30, f

1
"f

2
"0)1, and initial

conditions (a) (¹
1
"0)"0)1, (b) (¹

1
"0)"0)086.
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point about which it then spirals. The jumping of the solution trajectory from the
vicinity of one unstable equilibrium point to the other unstable point seems to take
place in a random fashion. The alternation of the second mode between two states
re#ects the chaotic nature of the system similar to the case of the Lorenz attractor
[19].

If c
1
Oc

2
O0, it is not possible to solve for the stationary response. In this case,

the equations of motion are numerically integrated. Depending on the internal
detuning parameter and initial conditions, the numerical integration gives di!erent
response regimes. For zero detuning parameters, the response amplitudes of the
two modes experience quasi-periodic oscillations. If one changes the initial
conditions the response trajectories take another form of attractor of nearly
periodic oscillations. In the absence of internal resonance, the amplitude frequency
curves give "xed points corresponding to steady state responses under purely
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parametric excitation. The presence of internal resonance obviously results in
quasi-periodic motion and the energy is re-distributed between the two modes.

For an internal detuning parameter, p
I
"!30, and exact parametric resonance,

the response can be quasi-periodic as shown in Figure 11(a) or chaotic with
irregular jumps between two unstable equilibria as shown in Figure 12(a)
depending on initial conditions. Figure 11(b) shows the phase of the "rst mode is
periodic while it has constant time rate for the second mode. On the other hand, the
phase of the switching sign of the amplitude b shown in Figure 12(b) reveals that the
phase of the "rst mode assumes "xed values when the amplitude #uctuates around
the positive value. When the "rst mode amplitude #uctuates around the negative
value the corresponding phase increases monotonically with time. The spectra of
Figure 12(a) reveal that the second mode amplitude has a wide frequency spectrum
with a large number of closely packed peaks which fall o! rapidly as their frequency
increases. The response is sensitive to initial conditions and di!erent initial
Figure 12. (a) Time history records of response amplitudes for the non-impact case under mixed
mode parametric excitation; (b) time history records of response phases for >

0
"0)2, k"0)2, j"0)2,

p
y
"0, p

I
"!30, f

1
"f

2
"0)1, and initial conditions (1) (¹

1
"0)"0)2, (2) (¹

1
"0)"0)2.



Figure 12. Continued.
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conditions can lead to almost periodic response. The initial conditions have
a signi"cant e!ect on the response behavior.

Contrary to the non-impact case, the impact loading brings the system response
to a "xed stationary point at exactly zero detuning parameters p

I
"0, and p

Y
"0.

The presence of internal resonance results in a redistribution of energy between the
two modes. Over a very narrow internal detuning parameter, 0(p

I
(1, the

system preserves "xed-point response. Away from this region, the response is
essentially quasi-periodic over the two ranges of internal detuning parameter
!15(p

I
(0, and 1(p

I
(15. The response for these ranges of internal detuning

possesses di!erent attractors with di!erent periods. Beyond these ranges, the
response experiences complex characteristics where both quasi-periodic and
switching phase characteristics can take place depending on the initial conditions.
Figures 13(a) and 13(b) show two sets of time history records corresponding to
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di!erent sets of initial conditions and for the same internal detuning parameter
p
I
"!15. This trend continues for di!erent values of p

I
. An extensive number of

numerical integration has revealed the presence of three possible basic regimes:
"xed point, quasi-periodic, and quasi-periodic/switching phase regimes. Again each
regime is governed by the initial conditions, internal detuning parameter, damping
ratios and excitation amplitude.

4. CONCLUSIONS

The dynamic response of a non-linear-coupled oscillator, involving impact
forces, to parametric excitation in the presence of simultaneous occurrence of
parametric and internal resonance conditions is examined. The method of multiple
scales has been used to derive four "rst-order di!erential equations for the response
amplitudes and phases in the absence and in the presence of impact forces. When
Figure 13. (a) Time history records of response amplitudes for the impact case under mixed mode
parametric excitation for initial conditions (1) (¹

1
"0)"0)2, (2) (¹

1
"0)"0)2; (b) for initial

conditions (1) (¹
1
"0)"0)01, (2) (¹

1
"0)"0)01. Both "gures are obtained for C

16
"!0)05,

C
15
"!0)05, >

0
"0)2, k"0)2, j"0)2, p

y
"0, p

I
"!15, f

1
"f

2
"0)1.



Figure 13. Continued.
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the "rst mode is parametrically excited, the numerical integration yielded "xed or
non-stationary solutions depending on initial conditions for non-impact and
impact cases. In the absence of impact forces, the second mode, which is indirectly
excited experiences wide spectrum response with random behavior looking. Fixed
solution were obtained for internal detuning parameter well remote from exact
internal resonance. The system response is found to possess two basins of initial
conditions. One set of initial conditions can lead the system response to oscillate
about the "xed point of the unimodal response (aO0 and b"0) in the absence of
internal resonance. The other set can drag the response to chaotic motion about
non-zero mean values of both modes. There are occasional symmetric spikes
indicating that these response possesses are essentially non-Gaussian with zero
skewness and kurtosis greater than 3. In the presence of impact forces, the scenario
was changed and the response of the second mode becomes random with almost
asymmetric non-Gaussian distribution.
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Under second-mode parametric excitation, it is found that the system energy is
more localized in the second mode with no energy sharing with the "rst mode.
While "xed amplitude solutions were obtained, the corresponding phase angles
were changing with time. In the absence of impact, the response exhibits "xed and
chaotic solutions depending on initial conditions. In the presence of impact the
second-mode amplitude always reaches steady state. In all cases, the response did
not coincide with the response of second-mode excitation (in the absence of internal
resonance) mainly due to time variation of the phase angles.

Under mixed-mode parametric excitation, and in the absence of impact loading,
the response did not achieve any stationary state regardless of initial conditions and
internal detuning parameter. The chaotic motion experienced oscillations around
two unstable equilibria indicating phase switching. Under restricted conditions of
zero-phase angles, "xed solutions are obtained. In the presence of impact loading, the
system possesses only "xed point within a very narrow range of internal detuning
parameter. Away from this region, the response is found to be quasi-periodic or
chaotic depending on initial conditions and internal detuning parameter. It is
important to note that other factors such as damping ratios and excitation
amplitudes can play an important role in shaping the response characteristics.
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